Excel 双变量模拟运算表 在借款筹资决策中的应用

王 洁

(枣庄学院经济与管理学院,山东枣庄 277160)

【摘要】借款是一种重要的筹资方式,但手工计算复杂,筹资决策效率低下。本文举例说明了如何利用 Excel建 立实用的借款筹资决策模型,以及如何利用双变量模拟运算表提高决策效率。

【关键词】借款筹资决策;双变量模拟运算表;模型设计

一、举例

丰 1

假设某人想通过借款购房,房产总价200万元,首付 30%,即需要借款140万元。他有公积金借款和商业借款两 种方式可以选择,这两种方式下根据借款年限的长短不 同,利率也不同:公积金借款年限5年以下(含5年)的年 利率为3.75%,5~30年的年利率为4.25%;商业借款年限1 年以内(含1年)的年利率为5.60%,1~5年(含5年)的年 利率为6.00%,5~30年的年利率为6.15%。

由于收入的限制,其每月还款额最高不能超过10000 元,但也不想低于9000元。他计划采用等额本息还款法, 按月还本付息,请给出其可选择的贷款方案。

供封笙次冲笙棋刑

10			日本	八牙火		术决主					
	A	В	C	D	E	F	G	H			
1											
2		借款筹资决策模型									
3				_							
4		公积金借款 年利率	5年以下	3.75%		借款全额	¥1,400,000				
5			5~30年	4.25%		借款关型	公积全借款				
6		商业借款 年利率	1年以内	5.60%		借款年限	17	÷			
7			1~5年	6.00%		借款年利率	4.25%				
8			5~30年	6.15%		每期偿还金额	¥9,650				
9				C	1						
10		=ABS (PMT (G7/12, G6*12, G4))									
11		1. 此图中的利率为央行2014年11月22日调整后的利率。利									
12		率变动后,用户需要对利率进行修改。									
13		2.用户只需在灰色区城输入或选择数据即可得出结果。									

二、借款筹资决策模型的建立

在一张 Excel 工作表上建立借款筹资决策模型, 详见 表1。其中,单元格G5的设置是这样的:单击G5,选择"数 据"菜单下的子菜单"有效性",在数据有效性的"设置"选 项卡下选择"序列",来源输入"公积金借款,商业借款"。 这样,G5单元格的右侧会出现一个下拉按钮,单击该按 钮,就可以直接选择借款类型为公积金借款或商业借款,

既增加了操作性又提高了效率。G6单元格的右侧做了一 个微调项,具体设置是这样的:选择"视图"菜单下的子菜 单"工具栏",打开"窗体"对话框,选择"微调项",在G6单 元格右侧画一个微调按钮,右击该微调按钮,选择"设置 控件格式",在"控制"选项卡下"当前值:1;最小值:1;最 大值:30;步长:1;单元格连接:\$G\$6",单击"确定"。这样 设置后,计算中的借款年限也不用手工输入,微调按钮向 上的箭头每点击一次增加一年,向下的箭头每点击一次 减少一年,借款年限限定在1~30之间变动,提高效率的 同时避免了手工输入的失误。G7单元格需要根据用户选 择的借款类型和借款年限自动显示借款年利率,所以在 G7单元格编辑公式实现需要:=IF(G5="公积金借款",IF (G6≤5, 3.75%, 4.25%), IF (G6≤1, 5.6%, IF (G6≤5, 6%, 6.15%)))。此公式中主要用到了 Excel 中的逻辑判断函数 IF函数, IF函数有三个参数, 第一个参数是逻辑判断条 件,当逻辑判断条件为真时,返回第二个参数的值,当逻 辑判断条件为假时,返回第三个参数的值。

借款筹资决策模型中最重要的单元格每期偿还金额 可以用Excel中的财务函数PMT(rate, nper, pv, fv, type)来 计算,其中:rate代表每期的利率;nper代表借款总期数; pv代表初始值即期初借款总额;fv代表终值即最后一期 末除年金外的现金收支,缺省值为0;type代表年金类型, 取值为0表示后付年金,取值为1表示先付年金,缺省值 为0。PMT函数考虑了资金的流入流出问题,资金流入用 正数,资金流出用负数。本例中,每期偿还金额是资金的 流出,所以PMT的计算结果是负值,为了方便描述,我们 对每期偿还金额的计算结果取绝对值。因此,本例中每期 偿还金额 G8单元格的计算公式为:=ABS(PMT(G7/12, $G6 \times 12, G4))_{\circ}$

在借款筹资决策模型建立之后,每期偿还金额与借 款金额、借款类型、借款年限之间建立了动态链接,当用

全国中文核心期刊・财会月刊□

户改变借款金额、借款类型、借款年限中任意一个或几个的值时,每期偿还金额会自动变化,这样,用户就可以通 过观察每期偿还金额的变化,选择一种自己能力所及的 方案进行借款。

三、利用双变量模拟运算表决策

如果某模型y=f(x₁, x₂, x₃, …, x_n, x_n.)中,其他自变 量固定不变, (仅 x_i和 x_j在一定范围内非连续波动, 假设 x_i有 m个取值, x_j有 n个取值, 则函数y有 m×n个计算结果。如 果需要在一张表中同时显示这m×n个计算结果, 该怎么 办呢?本例中的用户只能每次改变借款年利率和借款年 限中的一个或两个值, 一一将结果记录下来, 这种方式费 时费力缺乏效率。Excel提供的工具双变量模拟运算表则 能很好地解决这一问题, 双变量模拟运算表可在计算公 式固定的情况下, 快速求出某两个变量变动的结果, 并将 所有计算结果同时显示在工作表中, 便于查看和比较。接 上例, 在借款额一定, 借款年利率与借款期限变化的情况 下, 计算每期偿还金额。

1	表 2		借款	筹资双	变量模打	以运算表	گ	
	Н	1	J	X	L	1	N	0
15			借	款筹资双	变量模拟	运算表		
16			公税	会借款	2.533.55	商业做款	htomed	
17		0.000	5年以下	5~30年	1年以内	1~5年	5~30年	借款年利率
18		#9,650	3,75%	4,25%	5,60%	6,008	6,15%	2
19		1	\$119,050	\$119,370	₹120, 236	\$120, 495	¥120,590	
20	4 2-27	312	460, 639	960,951	#61, 797	¥62, 049	#62,144	
21	借款中的	8 3	#41, 178	¥41, 489	¥42, 337	¥42, 591	¥42, 686	
22		4	431, 454	\$31,768	432,623	#32, 879	#32, 975	
23		5	\$25, 625	#25, 941	\$26,806	W27, 066	#27,160	
24		6	#21, 744	422,063	₹22, 939	¥23, 202	¥23, 301	
25		1	818,976	\$19,298	∂ 20,185	#20, 452	\$20,553	
26		8	#16, 903	#17, 228	\$18, 127	¥18, 398	#18,500	
27		9	#15, 293	#15,622	416,532	¥16,808	¥16, 912	- 33.5
28		10	\$14,009	814, 341	¥15, 263	\$15, 543	\$15,649	「「「」
29		11	\$12,960	\$13,296	\$14,230	#14, 514	#14,621	18
30		12	#12,088	412, 428	413, 374	#13,662	半13,771	茯
31		13	#11, 353	#11,696	¥12,654	\$12, 946	#13,057	「「「」
32		14	410, 724	\$11,071	¥12,041	\$12, 337	#12, 449	/ 4
33		15	#10,181	\$10,532	#11, 514	¥11, 814	411, 928	15
34		16	49,708	410,062	¥11, 056	¥11, 360	411, 475	
35		17	49, 291	49,650	¥10,655	\$10,963	411,080	
36		18	¥8, 923	¥9,285	¥10, 302	#10, 614	#10,733	
37		19	¥8, 595	48, 960	49, 989	¥10, 305	¥10, 425	
38		20	¥8, 300	48, 669	#9,710	¥10, 030	¥10, 152	
39		21	¥8,035	¥8, 408	#9, 460	¥9, 794	¥9, 907	
- 60		22	#7, 796	48,172	#9, 235	¥9, 563	49, 688	
41		23	47,578	47, 958	¥9, 032	49, 364	49, 490	
42		24	¥7, 379	\$7,763	¥8, 848	¥8,184	49, 311	
63		25	#7,198	47,584	#8, 681	¥9, 020	49,149	
44		26	¥7, 031	47, 421	46, 529	48, 871	49,002	
45		27	\$6, 373	\$7,271	\$8, 389	48, 736	48, 967	
06		28	#6,736	47,133	#8, 262	¥8, 612	+8 745	
47		29	¥6, 605	47,005	#8,145	48, 498	48, 632	
43		30	#6, 484	46, 887	48,037	48, 394	48, 529	

第1步,在I19:I48区域输入各种可能的借款年限。第 2步,在J18:N18区域输入各种可能的借款年利率。第3 步,在I18单元格即可能的借款年限行与可能的借款年利 率列的交叉单元格输入每期偿还金额的计算公式:=ABS (PMT(G7/12,G6×12,G4))。第4步,选择I18:N48单元 区域。第5步,从"数据"菜单下选择"模拟运算表"子菜单, 出现如下图所示的模拟运算表对话框,在"输入引用行的 单元格"中选择"\$G\$7",在"输入引用列的单元格"中选择 "\$G\$6"。代表依次用J18:N18 区域各种可能的借款年利 率替换每期偿还金额计算公式中的借款年利率G7,依次 用I19:I48 区域各种可能的借款年限替换每期偿还金额计 算公式中的借款年限G6。第6步,点击"确定"按钮,此时 借款筹资双变量模拟运算表就将本例中所有方案的计算 结果都显示在J19:N48 区域中。第7步,选中J19:N48 区 域,选择"格式"菜单下的"单元格"子菜单,在"数字"选项 卡下选择"货币"。

模拟运算表对话框

当可能的借款年限或借款年利率发生变化时,我们 在模拟运算表上直接修改,计算结果将自动更新。本例 中,所有可能的方案都已在表2中用阴影标出,这些方案 中,此人能承受的方案我们这样来选出:选中阴影区域, 选择"格式"菜单下的"条件格式"子菜单,"单元格数值介 于9000与10000",格式→字体→加粗→确定。最终我们 可以看到,符合此人还款能力和期望的方案总共有8个, 其中公积金借款2个,商业借款6个。

四、结束语

对于借款筹资问题,可以利用Excel建立基础模型帮助决策。当需要改变借款筹资决策模型中的两个自变量,对比不同方案每期还款金额时,Excel提供的模拟运算表能够很快给出结果,大大提高了计算效率。

现实中,住房公积金管理中心一般对公积金借款有 上限规定,所以很多人实际上是既有公积金借款,又有商 业借款,有些人借款一段时间后,会提前还一部分款。双 变量模拟运算表只允许两个自变量同时变动,无法用于 多个自变量同时变动的情况。如何针对这些实际情况,在 Excel中建立模型高效决策,是未来可以探讨的问题。

主要参考文献

谷增军.Excel模拟运算表在财务分析中的应用[J].财 会月刊,2010(1).

王岳聪.基于**Excel**的按揭贷款分析[J].经营管理者, **2014**(15).

赖益强.**Excel**在购房贷款销售业务中应用[**J**].现代计算机(专业版),**2012**(**35**).

陈艳艳.基于 VBA 的住房贷款规划模型设计与实现 [J].中国管理信息化,2011(17).

【基金项目】枣庄学院实验教学、实验技术改革项目 (编号:201423)

2015.09 · 103 · 🗆