Excel 规划求解:企业全球运营管理工具

耿海利

(江西财经大学会计学院 南昌 330013)

【摘要】随着全球经济一体化的深入,企业运营管理方式发生了很大变化。本文通过一个实例,来探讨企业集团 拥有多个生产子公司、多个产品市场并且各个产品市场价格不同的情况下,企业如何使用 Excel规划求解工具进行 产品生产、运输和分配决策,以实现集团利润最大化。

【关键词】规划求解 企业集团 全球运营决策 敏感性分析

在传统财务运营管理中,营运决策包括确定最佳现 金持有量、最优订货批量,或者只是考虑单个市场的生产 与销售决策。企业集团全球运营管理涉及生产、运输、销 售等环节,需要在实现集团利润最大化的同时,解决生产 什么产品、在哪里生产、生产多少、运到哪个市场等诸多 问题。显然,采用传统的运营管理方法会比较棘手。而 Excel 提供的规划求解工具,不但能非常迅速地求出多种营 运决策模型的最优解,还可以给出敏感性分析报告,满足 财务全球化运营管理的需求,有效提高公司决策效率,同 时也能促进财务人员更多地参与到公司管理决策中。

一、问题描述

某跨国集团在中国和其他地区设立了四个工厂,分 别为A、B、C、D厂,产品主要面向国际市场销售,分别销 往北京、香港、纽约、东京四个城市。各个工厂的单位产品 成本、固定成本、产能,各个市场的销售价格和需求量,以 及各个工厂到每个市场的运输成本见图1。

<u>各个工厂的成本和产能单位(元)</u>								
分工厂	分工厂 单位变动成本		产能					
A	34900	1800	101					
В	32200	2750	201					
С	38350	2100	121					
D	23400	1950	250					
	各个市场的领	销售价格和	嚅求量					
	北京	香港	纽约	东京				
市场价格	55500	61100	57800	62650				
需求量	150	75	200	100				
I	厂到市场的运输	渝成本(运	费和税金))				
	北京	香港	纽约	东京				
A	500	12225	9075	21450				
B 4500		16500	13350	17850				
С	C 9150		550	12525				
D 21450		18450	15150	5925				

图 1 集团基本运营决策数据

在每个工厂产能允许同时最大限度满足市场需求的 情况下,集团管理层希望财务部给出能够实现集团利润 最大化目标的年生产和运输预算的决策方案。

二、建立线性数学模型

1. 定义决策变量。下文中,i(i=1,2,3,4)表示工厂,j 表示市场(j=1,2,3,4);决策问题可以用图2表示。所以定 义决策变量为X_i:即在i工厂生产的产品投放到j市场。

图 2 决策问题

2. 确定目标函数。最大利润=收入一产品变动成本-其他成本最大利润=55 500($X_{11}+X_{21}+X_{31}+X_{41}$)+61 100 ($X_{12}+X_{22}+X_{32}+X_{42}$)+57 800($X_{13}+X_{23}+X_{33}+X_{43}$)+62 650 ($X_{14}+X_{24}+X_{34}+X_{44}$)-34 900($X_{11}+X_{12}+X_{13}+X_{14}$)-32 200 ($X_{21}+X_{22}+X_{23}+X_{24}$)-38 350($X_{31}+X_{32}+X_{33}+X_{34}$)-23 400 ($X_{41}+X_{42}+X_{43}+X_{44}$)-(500 $X_{11}+12$ 225 $X_{12}+9$ 075 $X_{13}+$ 21 450 $X_{14}+4$ 500 $X_{21}+\dots+15$ 150 $X_{43}+5$ 925 X_{44})。

3. 列出约束条件。

(1)产能约束:X₁₁+X₁₂+X₁₃+X₁₄≤101;X₂₁+X₂₂+X₂₃+X₂₄≤201;X₃₁+X₃₂+X₃₄=X₂₄≤121;X₄₁+X₄₂+X₄₃+X₄₄≤250。

(2)需求约束:X₁₁+X₂₁+X₃₁+X₄₁≤150;X₁₂+X₂₂+X₃₂+X₄₂≤75;X₁₃+X₂₃+X₃₃+X₄₃≤200;X₁₄+X₂₄+X₃₄+X₄₄≤100。

(3)非负约束:X_{ij}≥0。

4. 最优解:最大利润时的X_{ij}。

三、数据及公式准备

1. 数据输入:把图1集团公司的决策数据输入新建的 Excel表中,如图3所示。

	A	В	С	D	E	F	G	Н
1	单位元	北京	香港	纽约	东京			
2	销售价格	55500	61100	57800	62650			
3		-	工厂到市场运输	诚本 个/元	变动成本	固定成本		
4	АТГ	500	12225	9075	21450	34900	1800	
5	B工厂	4500	16500	13350	17850	32200	2750	
6	СТГ	9150	12600	550	12525	38350	2100	
7	DI厂	21450	18450	15150	5925	23400	1950	
8	决策变量	北京	香港	纽约	东京	生产量		约束产能
9	AIL	X11	X12	X13	X14	=SUM(B9:E9)	<=	101
10	B工厂	X21	X22	X23	X24	=SUM(B10:E10)	<=	201
11	СТГ	X31	X32	Хзз	X34	=SUM(B11:E11)	<=	121
12	DI厂	X41	X42	X43	X44	=SUM(B12:E12)	<=	250
13	总计	=SUM(B9:B12)	=SUM(C9:C12)	=SUM(D9:D12)	=SUM(E9:E12)	=SUM(F9:F12)		673
14		<=	<=	<=	<=			
15	最大需求量	150	75	200	100	总计525		
16	总收入	=SUMPRODUCT (B2:E2, B13:E13)						
17	变动成本	=SUMPRODUCT (F4:F7,F9:F12)						
18	运输成本	=SUMPRODUCT (B4:E7,B9:E12)						
19	总利润	=B16-B17-B18						
20	固定成本	=SUM(G4:G7)						
21	净利润	=B19-B20						

图 3 数据准备相关公式

图 4 规划求解参数设置

諸	动约束	×
单元格引用位置(R): \$B\$9:\$E\$12	约束值(C): >= ▼ 0	
确定取消	添加(A)	帮助创

图 5 添加约束条件设置

2. 选择区域 B9: E12 为决策变量的决策结果区,用 "X11, X12,…,X43, X44"表示。

3. 约束条件的公式准备:生产量要小于产能,选择F9 单元格,输入公式"=SUM(B9:E9)",由于公式单元格是 相对引用,把该公式复制到F10、F11、F12单元格即可;同 理市场销售量要小于市场总的需求量,在B13单元格输入 求和公式"=SUM(B9:B12)",然后把该公式复制到C13、 D13、E13单元格中。

4. 使用 Excel 中 SUMPRODUCT 函数计算收入、成本。计算总收入,选择 B16 单元格,输入公式"=SUM-

全国中文核心期刊・财会月刊□

PRODUCT (B2: E2, B13: E13)";计算变动成本,选择 B17 单元格,输入公式"= SUMPRODUCT (F4:F7,F9 :F12)";计算运输成本,在 B18 单元格输入公式"= SUMPRODUCT (B4: E7, B9:E12)"。

SUMPRODUCT(数组 1,数组2)函数,可以用来计 算长度相等的行、列或者区 域对应元素乘积的和,是模 型中重要的函数,在计算多 个数据乘法时会非常简便。

5. 计算总利润。选择 B19单元格,输入公式"= B16-B17-B8";在固定成本

所在单元格输入公式"=SUM(G4:G7)";计算净利润,选 中B21单元格,输入公式"=B19-B20"。

四、规划求解

使用 Excel 规划求解工具,要求安装 Excel 时选择"完 全安装","工具"菜单下才有"规划求解"子菜单。如果安 装 Excel 时没有安装规划求解功能,需要加载"规划求解" 功能,点击 Excel 左上方图标,选择"Excel 选项",出现 Excel 选项对话框,选择左侧"加载项"→"规划求解加载 项"→"确定",然后默认安装即可使用规划求解功能。

1. 选中目标函数所在单元格B19,然后选择"工具"菜 单栏下的"规划求解",会出现规划求解参数对话框,如图 4所示,默认即为求目标函数最大值。

2. 设置可变单元格:可变单元格一般是决策变量所 在区域,在求解时会不断调整,直到满足目标函数最大 化。把光标移动到可变单元格下的选择框内,然后选中 "B9:E12"区域,松开鼠标即可完成设置。

3. 添加约束条件:选择"添加"按钮,出现添加约束条件对话框,见图5,选中"B9:B12"区域,下拉框选择">=",约束值填"0",即完成决策变量非负性的添加。同理可以添加另外两个约束条件,最后点击"确定"。

4. 选择规划求解参数对话框内的"求解"按钮,会出现"规划求解结果"对话框,选择保存"保持规划求解结 果",单击"确定",会出现如图6所示的最优结果。最优运 营决策为:A工厂为北京、香港市场生产97单位和4单位 产品;B工厂仅为北京市场生产53单位产品;C工厂仅为 纽约市场生产121单位产品;D工厂分别为香港、纽约和 东京市场生产71单位、79单位和100单位产品。集团可实 现最大利润为11 508 900,最大净利润为11 500 300。

□财会月刊·全国优秀经济期刊

	A	В	С	D	E	म	G	Н
1	单位元	北京	香港	纽约	东京			
2	销售价格	55500	61100	57800	62650			
3		エ厂到	到市场运输	成本 个/ラ	τ	变动成本	固定成本	
4	АТГ	500	12225	9075	21450	34900	1800	
5	BIГ	4500	16500	13350	17850	32200	2750	
6	CIL	9150	12600	550	12525	38350	2100	
7	DI厂	21450	18450	15150	5925	23400	1950	
8	决策变量	北京	香港	纽约	东京	生产量		约束产能
9	AIL	97	4	0	0	101	<=	101
10	BIL	53	0	0	0	53	<=	201
11	CIL	0	0	121	0	121	<=	121
12	DI厂	0	71	79	100	250	<=	250
13	总计	150	75	200	100	525		673
14		<=	<=	<=	<=			
15	最大需求量	150	75	200	100	总计525		
16	总收入	30732500						
17	变动成本	15721850						
18	运输成本	3501750						
19	总利润	11508900						
20	固定成本	8600						
21	净利润	11500300						
22								

图 6 规划求解最优结果

	A B	C	D	E	F	G	H
1	可变单元格	2					
2			终	递减	目标式	允许的	允许的
3	单元格	名字	值	成本	系数	增量	减量
4	\$B\$9	A工厂 北京	97	0	20100	275	1300
5	\$C\$9	A工厂 香港	4	0	13975	6225	150
6	\$D\$9	A工厂 纽约	0	-150	13825	150	1E+30
7	\$E\$9	A工厂 东京	0	-21750	6300	21750	1E+30
8	\$B\$10	B工厂 北京	53	0	18800	1300	275
9	\$C\$10	B工厂 香港	0	-275	12400	275	1E+30
10	\$D\$10	B工厂 纽约	0	-425	12250	425	1E+30
11	\$E\$10	B工厂 东京	0	-14150	12600	14150	1E+30
12	\$B\$11	C工厂 北京	0	-17025	8000	17025	1E+30
13	\$C\$11	C工厂 香港	0	-8750	10150	8750	1E+30
14	\$D\$11	C工厂 纽约	121	0	18900	1E+30	6225
15	\$E\$11	C工厂 东京	0	-21200	11775	21200	1E+30
16	\$B\$12	D工厂 北京	0	-14725	10650	14725	1E+30
17	\$C\$12	D工厂 香港	71	0	19250	150	6225
18	\$D\$12	D工厂 纽约	79	0	19250	6225	150
19	\$E\$12	D工厂 东京	100	0	33325	1E+30	14150
20	约束						
21			终	阴影	约束	允许的	允许的
22	<u>单元格</u>	名字		价格	限制值	増量	
23	\$F\$9	A工厂 生产量	101	1300	101	53	97
24	\$F\$10	B工厂 生产量	53	0	201	1E+30	148
25	\$F\$11	C工厂 生产量	121	6225	121	4	71
26	\$F\$12	D工厂 生产量	250	6575	250	4	71
27	\$B\$13	总计 北京	150	18800	150	148	53
28	\$C\$13	总计 香港	75	12675	75	97	4
29	\$D\$13	总计 纽约	200	12675	200	71	4
30	\$E\$13	总计 东京	100	26750	100	71	4
21							

图 7 敏感性分析报告

该运营决策模型建立后,如果国外产品市场价格、需 求,以及各个分厂成本、产能数据发生变化,公司只需把 变化部分从模型中替换下来,重新求解,即可更新为最新 条件下的最优解,这大大提高了集团运营决策的效率。

五、规划求解敏感性报告分析

使用 Excel 规划求解工具,不仅 可以高效快捷地求出方案最优解,而 且还提供了运营结果报告、敏感性报 告、极限值报告用于运营决策,这里 仅对最重要的敏感性报告进行分析。 在"规划求解结果"对话框内,选择保 存"保持规划求解结果"的同时,选择 报告下的"敏感性报告",单击"确 定",会出现图7所示的运营决策敏 感性分析报告。这个报告有两种版 本,本例选用"规划求解参数设置"对 话框中,"采用线性模型"得出的敏感 性报告进行分析。

1. 对可变单元格(决策变量)的 敏感性分析,以A工厂向北京市场供 货(单元格B9)为例:"终值"是该决 策变量的最优解;"递减成本"为该决 策变量再增加一单位时,目标函数 (总利润)的增加量;"目标式系数"为 该决策变量和目标函数的相对关系; "允许的增量"和"允许的减量"构成 该决策变量的最优域,即当变量系数 (20 100)增加275和减少1 300的范 围内变化,最优解(97)保持不变。

2. 通过对约束条件的分析可以 回答下列问题。哪个工厂增加一个单 位的产能将会带来最大的回报,哪个 市场增加一个单位的需求可以带来 最大的收益。

以A工厂的产能约束为例:"终 值"是A厂最优的生产量;"阴影价 格"表示当约束限制值增加一个单位 时总利润的变化量;"约束限制值"即 为指定的条件约束值;允许的增量、 允许的减量表示当A工厂的产能约 束在增加53个单位和减少97个单位 的范围内变化,阴影价格保持不变。

主要参考文献

1. 顾维筠. Excel规划求解的两类

应用.计算机应用与软件,2005;1

2. 张君.中国企业需要在全球化战略和运营两个层面 痛下功夫.中国经贸,2010;12

3. 李文锋.全球供应链运营模式对提升我国外贸核心 竞争力的启示及思考.国际贸易,2011;11