运用Excel构建管理费用线性预测模型

侯晓华 程博

(浙江东方职业技术学院经济管理系 浙江温州 325011 浙江农林大学天目学院 浙江临安 311300)

【摘要】本文以解高等数学和计量经济中的多元变量关系数据为蓝本,按Excel计算矩阵的方阵的操作规则和目标函数 求值,以直观、简捷的方式,展示其在经济、会计建模中的作用,充分挖掘电脑在数学、统计学与经济、会计建模中的潜能。 【关键词】Excel 矩阵计算 经济建模

(1)

一、理论依据

设总体的线性关系式为:

 $Y = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u_i$

设样本的数据形式可以用多元线性方程表示,它是由n个方程以及k+1个未知参数 β_0 , β_1 …, β_k 组成的一个线性方程组,如下所示:

 $Y_{1} = \beta_{0} + \beta_{1}X_{11} + \beta_{2}X_{21} + \dots + \beta_{k}X_{k1} + u_{1}$ $Y_{2} = \beta_{0} + \beta_{1}X_{12} + \beta_{2}X_{22} + \dots + \beta_{k}X_{k2} + u_{2}$ $\dots \qquad \dots \qquad \dots \qquad \dots$ $Y_{n} = \beta_{0} + \beta_{1}X_{1n} + \beta_{2}X_{2n} + \dots + \beta_{k}X_{kn} + u_{n}$

门的审计;国家审计对政府的审计,则是对上级的审计。国家 审计机关没有一种超然的独立地位,不具备充分的处置权力, 审计免疫系统难以真正做到"免疫"。如果能提升国家审计机 关超然的独立地位,不受各级政府机关的干涉和影响,就更能 提高审计的效率和效果。

(2)系统外部各部门积极配合。审计免疫系统要真正做到 免疫,也要有现实的土壤,这就需要其他各个部门的积极配 合,为审计部门进行审计提供必要的支持。这一方面需要制度 和体制的与时俱进,另一方面也需要各部门发挥团队协作精 神,相互配合,共同努力,将审计工作落到实处。

(3)系统内部健康有序。审计机关作为政府专司经济监督 的职能部门,其"免疫系统"功能和作用的充分发挥,需要通过 审计决策系统、审计执行系统、审计控制系统、审计预警系统、 审计评价系统五个管理子系统功能的有效发挥来实现。

三、结论与展望

审计实际上是一个通过审查、评价来生产审计信息,并将 这些信息传递给利益相关者的系统过程。自刘家义审计长提 出审计免疫系统以来,众多学者对审计免疫系统进行了深入 的研究,主要集中在审计免疫系统论对审计理论及实务的影 响、理论贡献、作用机理及实现路径上。但审计免疫系统如何 才能真正做到免疫呢?笔者将其与人体免疫系统进行类比,从 将线性方程组写成以下矩阵形式:

 $\begin{bmatrix} 1 & X_{11} & X_{21} & \cdots & X_{k1} \end{bmatrix} \begin{bmatrix} \beta_0 \end{bmatrix}$ Y_1 u_1 1 X_{12} X_{22} ... X_{k2} β_1 Y_2 u_2 Y_n 1 X_{1n} X_{2n} \cdots X_{kn} β_k u_n 即:Y=XB+U,其中: $\begin{bmatrix} 1 & X_{11} & X_{21} & \cdots & X_{k1} \end{bmatrix}$ Y_1 Y_2 1 X_{12} X_{22} ... X_{k2} Y= X= $Y_n |_{n \times 1}$ $\begin{bmatrix} 1 & X_{1n} & X_{2n} & \cdots & X_{kn} \end{bmatrix}_{n \times (k+1)}$

远离"细菌"和"病毒"、增强系统的机能和保证系统能顺畅"运行"三个方面进行了深入的分析,为审计免疫系统真正做到免疫提供参考。

审计免疫系统论的提出为审计理论的发展提供了新的指 引,我们现在要做的不是就理论谈理论,而是如何将理论发扬 光大,用先进的理论指导实践。目前,应着力研究如何将审计 免疫系统论应用于实践,并解决实务中存在的问题。因此探讨 审计免疫系统如何真正做到免疫具有深远的理论意义和实践 意义,笔者希望所提出的观点对实践的发展有所指引。

【注】本文系湖北省审计厅项目"免疫系统论对审计理论的影响"的阶段性研究成果。

主要参考文献

1.段兴民,赵晓铃.国家审计"免疫系统"论引发的思考.审 计与经济研究,2009;3

2. 王卫星,李晓仙.内部控制与审计.当代财经,2002;10

3.刘家义.以科学发展观为指导推动审计工作全面发展. 审计研究,2008:3

4. 刘英来.审计是经济社会运行的免疫系统研讨会综述. 审计研究,2008;5

5.赵保卿."免疫系统"论与审计的预防职能.审计与经济 研究,2009;3

2013.2 **下・103・**□

$$\boldsymbol{\beta} = \begin{bmatrix} \boldsymbol{\beta}_0 \\ \boldsymbol{\beta}_1 \\ \cdots \\ \boldsymbol{\beta}_k \end{bmatrix}_{(k+1) \times 1} \quad \boldsymbol{U} = \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \\ \cdots \\ \boldsymbol{u}_n \end{bmatrix}_{r}$$

上式中:Y表示被解释变量样本观测值的n×1阶列向量; X表示变量样本观测值的n×(k+1)阶矩阵,它的每个元素X_{ji} 都有两个下标,第1个下标j表示第j个变量,第2个下标i表示第i 次观测值,矩阵X的每一列表示一个解释变量的n个观测值向 量,全为1的列代表截距项β₀;β表示未知参数的(k+1)×1阶列 向量;U表示随机误差的n×1阶列向量。

由于参数β₀,β₁,…,β_k都是未知的,我们可以利用样本观 测值(Y₁,X_{1i},X_{2i},…,X_{ki})对它们进行估计。假设经过计算得 到的样本估计量为β₀,β₁,…,β_k,它们分别是相应的未知参数 β₀,β₁,…,β_k的估计值,于是便得到了与Y=β₀+β₁X_{1i}+β₂X_{2i}+ …+β_kX_{ki}+u_i相应的回归直线方程式Ŷ_i=β₀+β₁X_{1i}+β₂X_{2i}+…+ β_kX_{ki}+u_i。

二、建模实例

某公司管理费用资料如下:

年份	管理费用 Y(千元)	甲产品产量 X ₁ (万吨)	乙产品产量 X ₂ (万吨)
1	3	3	5
2	1	1	4
3	8	5	6
4	3	2	4
5	5	4	6

要求:根据样本资料数据,建立该公司的管理费用与产品 产量之间的函数模型(根据样本估计,至少不少于30组观测 值,本例只选用了5个年份的观测值,且本例为时间序列数据, 而非截面数据。考虑到旨在解决运用Excel计算问题,故样本数 量从略)。

将以上数据用下式表示,Y表示被解释指标变量,等式的 右边表示解释指标的变量,有以下方程式和相应的矩阵:

 $Y = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}$ $\left[\beta_{0} \right]$ β_1 β= $=(X^TX)^{-1}X^TY$... β_k 改写为矩阵式: 3] 1 3 5 1 1 1 4 Y= 8 X= 1 5 6 3 1 2 4 5 1 4 6

具体步骤:

(1)数据输入。打开Excel窗口,在工作表中取5行4列,依 次将以上矩阵Y输入"A1:A5"区间;将矩阵X输入"B1:D5"区 间。见图1:

	K1	Ŧ	fx .			
	А	В	С	D	Е	F
1	3	1	3	5		2
2	1	1	1	4		
3	8	1	5	6		
4	3	1	2	4		
5	5	1	4	6		
6						

图 1

(2)将矩阵B1:D5换置,即求X^T。因为这个矩阵不是方阵, 所以要把它转化为n×n的方阵,要转化之先选中B1:D5,然后 打开编辑菜单中点击"复制",而后关上菜单;在Excel窗口选 中E1:I3,再打开编辑窗口点击"选择性粘贴",在弹出窗口勾 选"转置"并点击"确定"(见图2),E1:I3表格中会出现换置后 的3行5列矩阵(见图3)。

	E1	▼ f.	ŵ			
	A	В	С	D	Е	F
1	3	1	3	5		
2	1	1	1	k 4		
3	8	1	5	6		
4	3	1	2	4		
5	5	1	4	6		
6			_			
7		选择性粘贴			_ ? ×	
8		粘贴				
9		② 全部(<u>A</u>)) ()	有效性验证	(<u>N</u>)	
10		〇公式(<u>F</u>) ()	边框除外(X)	
11		○数值(⊻) ()	列宽(<u>W</u>)		
12		○格式(<u>T</u>) ()	公式和数字	格式(<u>R</u>)	
13		○批注(⊆) ()	值和数字格:	式(<u>U</u>)	
14		运算				
15		◎ 无(<u>0</u>)	0	乘(<u>M</u>)		
16		$Om(\underline{D})$	0	除(<u>I</u>)		
17		○ 頑(<u>S</u>)				
18		ᄃᄥᅶᅔ	☆≕(₽)			
19		郎过空	甲兀(Ϊ)	≥ 按直(E)		
20		【粘贴链接(]	<u>L)</u> 确:	È 🗌	取消	

图 2

	E1	• 1	¥ 1				for the form				
	А	В	С	D	Е	F	G	Н	Ι		
1	3	1	3	л 5	1	1	1	1	1		
2	1	1	1	¥ 4	3	1	5	2	4		
3	8	1	5	6	5	4	6	4	6.		
4	3	1	2	4							
5	5	1	4	6							
6											

图 3

(3)求X^TX的值。在工作栏表中,用光标选一方阵B7:D9, 然后回到菜单中的fx函数,点击出现"插入函数"窗口,在"或 选择类别"中选择"数学与三角函数",在"插入函数"中选择 "MMULT"函数,点击"确定"(见图4),在弹出的窗口"Array1" 输入框中输入矩阵X所在区域B1:D5;在"Array2"输入框中 输入X^T矩阵所在的区间E1:I3。然后单击"确定""计算结果= 5"的字样出现(见图5)。将光标移入fx函数等于栏中,这时工 作栏中显示两个矩阵的工作区间和求解栏,见图6所示。然后

全国中文核心期刊•财会月刊□

同时按下Ctrl、Shift、Enter 三个键,则区域B7:D9 中显示出两 个矩阵乘积的结果,见图7。

插入函数	? X
搜索函数(<u>s</u>):	
请输入一条简短的说明来描述您想做什么,然后单击 "转到"	转到(<u>G</u>)
或选择类别(℃): 常用函数 🗸	
选择函数(<u>N</u>):	
MMULT LOGEST MINVERSE MDETERM LINEST ABS AVERAGE MMULT(array1,array2) 返回两数组矩阵的乘积,结果矩阵的行数与Array1相等, Array2相等	▲ ● 列数与
有关该函数的帮助 确定	取消
图 4	

函数参数				×
MMULT)
Array1	E1:I3	S = {	1,1,1,1,1,1:3,1,5	,
Array2	B1:D5	. = {	1,3,5:1,1,4:1,5	,
		={	5,15,25;15,55,8	1:25
返回两数组矩阵	的乘积,结果矩阵的	的行数与Array1相	目等,列数与Array2	相等
Array2 用于 的行	F乘积计算的第一 行数相等	个数组数值,Arr	ay1的列数应该与	Array2
计算结果=	5			
有关该函数的基	(H)		744	NK)

图 5

Μ	$MMULT \bullet X \checkmark A = MMULT(E1:I3,B1:D5)$										
	А	В	С	D	Е	F	G	Н	Ι		
1	3	1	3	л ⁵	1	1	1	1	1		
2	1	1	1	⁶⁷ 4	3	1	5	2	4		
3	8	1	5	6	5	4	6	4	6		
4	3	1	2	4							
5	5	1	4	6							
Ģ											
7		=MMULT(E1									
8											
9			_								
10											

图 6

	B7 $\checkmark X \checkmark f = MMULT(E1:I3,B1:D5)$								
	А	В	С	D	Е	F	G	Н	Ι
1	3	1	3	<u>л</u> 5	1	1	1	1	1
2	1	1	1	^የ 4	3	1	5	2	4
3	8	1	5	6	5	4	6	4	6
4	3	1	2	4					
5	5	1	4	6					
Ģ									
7		5	15	25					
8		15	55	81					
9		25	81	129					

(4)求X^TY的值。在工作表中选中列H7:H9区域,回到菜 单中的fx函数,点击出现"插入函数"窗口,在"或选择类别"中 选择"数学与三角函数",在"选择函数"中选择"MMULT"函 数。在"Array1"输入框中输入矩阵X^T所在区域E1:I3;在"Array2" 输入框中输入矩阵Y所在的区间A1:A5,"计算结果=20"显 示,然后单击"确定"。将光标移入fx函数等于栏中,这时工作 栏中显示两个矩阵的工作区间和求解栏,见图8。然后同时按 下Ctrl、Shift、Enter三个键,则区域H7:H9中显示出两个矩阵 乘积20:76:109的字样。

Μ	$MMULT \bullet X \checkmark f = MMULT(E1:I3,A1:A5)$											
	А	В	C	D	E	F	G	Н	Ι			
1	3	1	3	д 5	1	1	1	1	1			
2	1	1	1	4	3	1	5	2	4			
3	8	1	5	6	5	4	6	4	6			
4	3	1	2	4								
5	5	1	4	6								
6												
7		5	15	25				=MMULT(E1				
8		15	55	81								
9		25	81	129								

图 **8**

(5)求(XX^T)⁻¹的值。将光标选中3行3列E7:G9区间,然后 点击菜单栏函数"fx"符号,弹出"插入函数"窗口,在该窗口 "或选择类别"中选择"数学三角函数",在下拉窗口子项中选 择"MINVERSE"函数;按下"确定"弹出"函数参数"窗口,在 "Array"输入框中输入区域"B7:D9"区间,"计算结果=26.7"出 现。单击"确定",将光标移入函数"fx"=框后,工作栏出现工作 区间,见图9。

然后同时按下Ctrl、Shift、Enter 三个键,则在区域E7:G9 中显示出矩阵(XX^T)⁻¹的值,见图10。

М	MULT	• X √)	[€] =MIN	IVERSI	E(B7:D9))			
	А	В	С	D	Е	F	G	Н	Ι
1	3	1	3	5	1	1	1	1	1
2	1	1	1	¥4	3	1	5	2	4
3	8	1	5	6	5	4	6	4	6
4	3	1	2	4					
5	5	1	4	6					
6									
7		5	15	25	MINVERSE			20	
8		15	55	81				76	
9		25	81	129				109	

图 9

	E7 \checkmark $\$$ {=MINVERSE(B7:D9)}										
	Α	В	С	D	Е	F	G	Н	Ι		
1	3	1	3	<u>പ</u> 5	1	1	1	1	1		
2	1	1	1	V 4	3	1	5	2	4		
3	8	1	5	6	5	4	6	4	6		
4	3	1	2	4							
5	5	1	4	6							
6											
7		5	15	25	26.7	4.5	-8	20			
8		15	55	81	4.5	1	-1.5	76			
9		25	81	129	-8	-1.5	2.5	109			

图 10

□财会月刊•全国优秀经济期刊

(3)、(4)、(5)步骤的公式值如下: $X^{T}X = \begin{bmatrix} 5 & 15 & 25 \\ 15 & 55 & 81 \\ 25 & 81 & 129 \end{bmatrix} \qquad X^{T}Y = \begin{bmatrix} 20 \\ 76 \\ 109 \end{bmatrix}$ $(X^{T}X)^{-1} = \begin{bmatrix} 26.7 & 4.5 & -8.0 \\ 4.5 & 1.0 & -1.5 \\ -8.0 & -1.5 & 2.5 \end{bmatrix}$

(6)回归方程参数的计算。在工作栏表中用光标选一列, 本文选为I7:19,然后回到菜单中的fx函数,点击出现"插入函 数"窗口,在"或选择类别"中选择"数学与三角函数",在"选择 函数"中选择"MMULT"函数。在弹出窗口"Array1"输入框中 输入矩阵所在区域E7:G9;在"Array2"输入框中输入列向量 X^TY所在的区间H7:H9,如图11所示,"计算结果=4"显示,然 后单击"确定"。将光标移入fx函数等于栏中,这时工作栏中显 示两个矩阵的工作区间和求解栏,见图12。然后同时按下 Ctrl、Shift、Enter 三个键,则区域I7:I9 中显示出两个矩阵乘积 的结果,见图13。

Μ	MULT	• X √ /	k =MM	ULT (E	7:G9,H	47:H9)			
	Α	В	С	D	Е	F	G	Н	Ι
1	3	1	3	л 5	1	1	1	1	1
2	1	1	1	9 ₄	3	1 .	5	2	4
3	8	1	5	6	5	4	6	4	6
4	3	1	2	4					
5	5	1	4	6					
6									
7		5	15	25	26.7	4.5	-8	20	EMMULT(E7
8		15	55	81	4.5	1	-1.5	76	
9		25	81	129	-8	-1.5	2.5	109	

图 12

	I7 • \hbar {=MMULT(E7:G9,H7:H9)}								
	Α	В	С	D	E	F	G	Н	Ι
1	3	1	3	പ്പ 5	1	1	1	1	1
2	1	1	1	۳ ₄	3	1	5	2	4
3	8	1	5	6	5	4	6	4	6
4	3	1	2	4					
5	5	1	4	6					
6									
7		5	15	25	26.7	4.5	-8	20	4
8		15	55	81	4.5	1	-1.5	76	2.5
9		25	81	129	-8	-1.5	2.5	109	-1.5

列式如下所示:

$$\boldsymbol{\beta} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{Y} = \begin{bmatrix} 26.7 & 4.5 & -8.0 \\ 4.5 & 1.0 & -1.5 \\ -8.0 & -1.5 & 2.5 \end{bmatrix} \begin{bmatrix} 20 \\ 76 \\ 109 \end{bmatrix} = \begin{bmatrix} 4 \\ 2.5 \\ -1.5 \end{bmatrix} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

 $Y=4+2.5X_{1i}-1.5X_{2i}$

三、模型的应用

1. 用模型预测。在以上模型中,假定企业预测期的甲、乙两种产品的产量分别是5万吨和5万吨,则测算出的管理费用为9千元(4+2.5×5-1.5×5)。

2. 用模型分析:

管理费用 模型值	管理费用 实际值	实际值比 模型值差额	甲产品产量 X ₁ (万吨)	乙产品产量 X ₂ (万吨)
4	3	-1	3	5
0.5	1	0.5	1	4
7.5	8	0.5	5	6
3	3	0	2	4
5	5	0	4	6

以上差量分析表明实际值超过模型值的最大为0.5千元; 实际值与模型值最小为-1千元,即第一期管理费用使用最 小,第二、三期管理费用控制实际值比模型值差额为0.5千元。 以上差量可以进一步分析原因。

四、结语

在线性建模中,其操作步骤、计算矩阵函数与解多元线性 方程比,关键是所遇到的矩阵不是方阵,要转化之,只需采用 电脑中的"编辑——选择性粘贴"功能就可以很容易求出换置 后的矩阵,然后把计算出原矩阵与换置后的矩阵相乘,就可以 得到我们所要的方阵矩阵,以满足求解需要,使更多序列观测 值适应矩阵建模的需要。

用Excel建模,充分发挥了Excel的功能。但也存在着不足, 即受电脑屏幕限制,对非方阵的序列数据转换有些不便,这与 SPSS等统计软件相比存在一定劣势。但在尚未掌握其他软件 计算功能的前提下,无疑运用Excel建模还是简单易行的。

【注】本文系教育部人文社会科学研究青年基金项目(项 目编号:11YJC630031)、浙江省自然科学基金项目(项目编 号:Y6110042)的阶段性研究成果。

主要参考文献

1. 杨惠英,邵晨光.用Excel求解线性方程组的方法.东北电 力大学学报(自然科学版),2007;4

2. 曲双红, 王雪莲. 求解线性方程组迭代法的Excel实现. 科技信息(学术研究), 2008;1

3. 张学辉, 张桂月. 迭代算法在Excel中的实现. 计算机时代, 2005;1

4. 杨德祥.在Excel中应用迭代法求解线性方程组——雅可比(Jacobi)和塞德尔(Seidel)迭代法.工程地质计算机应用, 2007;1

5. 王中华等. Excel求解线性方程组及其在化学中的应用. 云南师范大学学报(自然科学版), 2006; 3